Institute of Experimental Medicine CAS

The main topics studied in the Department are isolation, labelling and the use of stem cells for the treatment of brain injury, spinal cord and neurodegenerative diseases. Various types of cells (mesenchymal stem cells, neural precursor cell lines derived from fetal spinal cord, or from induced pluripotent cells) are studied, together with anti-inflammatory substances for their potential to promote the regeneration of nervous tissue. Macroporous polymeric hydrogels are used as suitable carriers for cell growth in in vitro cultures as well as for in vivo implantations facilitating the regeneration of the injured tissue. The aim of the cell therapy is to repair, replace or improve biological functions of the damaged neural tissue. For in vivo imaging of grafted cells and drug delivery we utilize magnetic nanoparticles, which are characterized in terms of cytotoxicity and genotoxicity and their influence on grafted cells and host tissue.

Deputy Head:

Lucia Urdzíková-Machová, MD, PhD.
E-mail: urdzikl@biomed.cas.cz
Tel.: +420 241 062 619

Research Scientists:

Juan Pablo Muñoz-Cobo Belart, PhD.
Aleš Hejčl, MD, PhD.
Assoc. Prof. Pavla Jendelová, PhD.
Klára Jiráková, PhD.
Nataliya Romanyuk, PhD.
Jiří Růžička, PhD.
Karolína Turnovcová, MD, Ph.D.
Lucia Urdzíková-Machová, MD, PhD.

PhD. Students:

Kristýna Kárová, MSc
Petr Krůpa, MD
Dana Mareková, MSc
Kateřina Neumannová, MSc
Monika Šeneklová, MSc
Barbora Svobodová, MSc
Ingrid Vargová, MSc

Technicans:

Michal Douděra
Pavlína Macková
Žaneta Kárníková

Important results in 2017

1. Grafted mesenchymal stem cells labeled with iron oxide or cobalt-zinc-iron nanoparticles and oxidative stress in vivo

To assess the efficacy of stem cell therapy, magnetic resonance imaging (MRI) combined with a contrast label appears to be an effective noninvasive technique for the tracking of transplanted stem cells in living organisms. The application of MRI in vivo requires the use of a safe contrast agent, that is, the achievement of a sufficient level of cell labeling for MRI and, simultaneously, biocompatibility of the label with stem cells and the host tissue without any side effects on their biological properties and functions.

Rat mesenchymal stem cells (rMSCs) labeled with 1) poly-l-lysine-coated superparamagnetic iron oxide nanoparticles or 2) silica-coated cobalt-zinc-iron nanoparticles were implanted into the left brain hemisphere of rats, to assess their effects on the levels of oxidative damage to biological macromolecules in brain tissue. Animals were sacrificed 24 hours or 4 weeks after the treatment, and the implantation site along with the surrounding tissue was isolated from the brain. The comet assay with enzymes of excision DNA repair (endonuclease III and formamidopyrimidine-DNA glycosylase) was used to analyze breaks and oxidative damage to DNA in the brain tissue. Oxidative damage to proteins and lipids was determined by measuring the levels of carbonyl groups and 15-F 2t -isoprostane (enzyme-linked immunosorbent assay). In histological sections, the expression of glial fibrillary acidic protein and CD68 was analyzed to detect astrogliosis and inflammatory response.

MRI displayed implants of labeled cells as extensive hypointense areas in the brain tissue. The signal was clearly visible within 4 weeks after implantation of rMSCs. No increase of oxidative damage to DNA, lipids, or proteins over the control values was detected in any sample of brain tissue from the treated animals. Also, immunohistochemistry did not indicate any serious tissue impairment around the graft.

jendelova-result-1-2017

The transplantation of magnetically labeled cells into the rat brain did not show any damage to the macromolecules of the nerve tissue (A-C) or induced any inflammatory reaction (D-F). Magnetically labeled cells, unlike unlabeled (G), were well visible at MRI. (H, I).

Publication: Novotna B, Herynek V, Rossner P Jr, Turnovcova K, Jendelova P.: The effects of grafted mesenchymal stem cells labeled with iron oxide or cobalt-zinc-iron nanoparticles on the biological macromolecules of rat brain tissue extracts. Int J Nanomedicine. 2017 Jun 20;12:4519-4526

2. A green tea polyphenol epigallocatechin-3-gallate enhances neuroregeneration after spinal cord injury by altering levels of inflammatory cytokines

Spinal cord injury (SCI) is a debilitating condition which is characterized by an extended secondary injury due to the presence of inflammatory local milieu. Epigallocatechin gallate (EGCG) appears to possess strong neuroprotective properties. Here, we evaluated the beneficial effect of EGCG on recovery from SCI. Male Wistar rats were given either EGCG or saline directly to the injured spinal cord and thereafter a daily IP injection. The results demonstrated that EGCG-treated rats displayed a superior behavioral performance in a flat beam test, higher axonal sprouting and positive remodelation of glial scar. Cytokine analysis revealed a reduction in IL-6, IL2, MIP1α and RANTES levels on days 1 and 3, and an upregulation of IL-4, IL-12p70 and TNFα 1 day following SCI in EGCG-treated rats. Treatment with EGCG was effective in decreasing the nuclear translocation of subunit p65 (RelA) of the NF-κB dimer, and therefore canonical NF-κB pathway attenuation. A significant increase in the gene expression of growth factors (FGF2 and VEGF), was noted in the spinal cord of EGCG-treated rats.

jendelova-result-2-2017

The image A shows transveral section of the spinal cord lesion stained with hematoxyline and NF-κB - DAB staining after EGCG treatment. The nuclear translocation of subunit p65 (RelA) of the NF-κB dimer (black arrows), nuclei stained with hematoxylin without NF-κB (red arrow) and cells with NF-κB in cell cytoplasm (green arrows). Bar A = 500 μm, Bar A1 = 20 μm. EGCG treatment significantly supports axonal sprouting in spinal cord lesion (B). Locomotor improvement (flat beam test) was observed in animals treated with EGCG when compared with control (C). Levels of proinflammatory cytokines 1 and 3 days after SCI in EGCG and saline-treated groups (D).

Important result in 2016

Stem Cell Comparison Study in Treatment of Experimental Spinal Cord Injury Model

Three different sources of human stem cells – bone marrow mesenchymal stem cells (MSCs), and two neural progenitors (NPs) derived from immortalized spinal fetal cell line (SPC 01), or induced pluripotent stem cells (iPS-NPs) – were compared in the treatment of a balloon-induced spinal cord compression lesion in rats. Morphometric analyses of spared white and grey matter, axonal sprouting and glial scar formation, as well as qPCR and Luminex assay were conducted to detect endogenous gene expression, while inflammatory cytokine levels were performed to evaluate the host tissue response to stem cell therapy. The highest locomotor recovery was observed in iPS-NP-grafted animals, which also displayed the highest amount of preserved white and grey matter. Grafted iPS-NPs and SPC-01 cells significantly increased the number of GAP43+ axons, reduced astrogliosis, downregulated Casp 3 expression and increased IL-6 and IL-12 levels. hMSCs transiently decreased levels of inflammatory IL-2 and TNF-a. These findings correlate with the hMSCs short survival, while NPs survived for 2 months and matured slowly into glia and tissue specific neuronal precursors. SPC-01 cells differentiated more in astroglial phenotypes with dense structure of the implant, whereas iPS-NPs displayed a more neuronal phenotype with loose structure of the graft. The iPS-NP treatment of spinal cord injury (SCI) provided the highest recovery of locomotor function due to robust graft survival, and its effect on tissue sparing, reduction of glial scarring and increased axonal sprouting.

vysledky-1-2016

While both grafted neural precursors survived well in the injured spinal cord for 2 months, bone marrow mesenchymal stem cells administered intrathecally were found only on the spinal cord surface 14 days after application. Both types of neural precursors differentiated into astrocytes, oligodendrocytes and neurons. Application of all three cell types improved the motor skills of experimental animals. Neural precursors from iPSC spared the gray matter and promoted the growth of axons at the site of injury.

Publication:
Ruzicka J, Machova-Urdzikova L, Gillick J, Amemori T, Romanyuk N, Karova K, Zaviskova K, Dubisova J, Kubinova S, Murali R, Sykova E, Jhanwar-Uniyal M, Jendelova P. A Comparative Study of Three Different Types of Stem Cells for Treatment of Rat Spinal Cord Injury. Cell Transplant. 2017 Apr 13;26(4):585-603. Epub 2016 Nov 2.

Important result in 2015

Mesenchymal stem cells reduce the working memory deficit in Alzheimer's disease model

Stem cell transplantation may have a positive influence and slow the progression of some neurodegenerative diseases. In our study, we transplanted human mesenchymal stem cells (MSCs) into the lateral ventricle of 8 months old transgenic mice (AD-3xTg), which mimic the symptoms of Alzheimer's disease (AD). We studied the changes in the spatial reference and working memory, and the effect of transplanted MSCs on neurogenesis in the subventricular zone (SVZ). We also monitored the levels of harmful oligomer amyloid 56kDa (Ab*56), and the amount of the enzyme glutamine synthetase (GS), which is important for regulating the levels and metabolism of glutamate in the brain, in entorhinal and prefrontal cortex and in the hippocampus, i.e. in the structures that are related with cognitive functions. In 14 months old mice treated with MSC we observed preserved working memory, which may be a result of preserved levels of GS and significantly reduced levels of Ab*56 in the entorhinal cortex (Figure 1). These changes, observed six months after transplantation, were also accompanied by increased cell proliferation in the SVZ. Since the transplanted cells survive in the body of the recipient only for a limited period of time, it is likely that the observed effects could be even more pronounced in case of repeated administration of the stem cells at regular intervals during the life spam of the 3xTg mice.

2015jendelovacz

Working memory test in mice with AD. The red line represents the second trial to find the island in the water maze. The ability to remember the position of the islet is shown at the top left of the chart. AD mice had in the entorhinal cortex reduced level of harmful amyloid oligomer Aβ*56. The graph on the bottom right. AD - Alzheimer's disease, EC - entorhinal cortex, ctrl - control animals were age-matched.

Publication:
Ruzicka J, Kulijewicz-Nawrot M, Rodrigez-Arellano JJ, Jendelova P, Sykova E. Mesenchymal Stem Cells Preserve Working Memory in the 3xTg-AD Mouse Model of Alzheimer's Disease. Int J Mol Sci. 2016 Jan 25;17(2)

2017

Forostyak, S. , Syková, E.: (2017) Neuroprotective Potential of Cell-Based Therapies in ALS:From BenchtoBedside. Frontiers in Neuroscience. 11: 591.

Hejčl, A. , Vondráková, K., Kelbich, P., Sameš, M., Tsenov, G., Kačer, P.: (2017) Model cerebrálních vazospasmů a metabolomické mapování. (A Model of Cerebral Vasospasms and Metabolomic Mapping.) Chemické listy. 111(1): 56-61.

Herynek, V., Gálisová, A., Srinivas, M., van Dinther, E.A.W., Kosinová, E., Růžička, J., Jirátová, K., Kříž, J., Jirák, D.: (2017) Pre-Microporation Improves Outcome of Pancreatic Islet Labelling for Optical and F-19 MR Imaging. Biological Procedures Online. 19: 6.

Kaman, O., Dědourková, T., Koktan, J., Kuličková, J., Maryško, M., Veverka, P., Havelek, R., Královec, K., Turnovcová, K., Jendelová, P., Schröfel, A., Svoboda, L.: (2016) Silica-coated manganite and Mn-based ferrite nanoparticles: a comparative study focused on cytotoxicity. Journal of Nanoparticle Research. 18(4): 1-18, č. článku 100.

Kočí, Z., Výborný, K., Dubišová, J., Vacková, I. , Jäger, A., Lunov, O., Jiráková, K., Kubinová, Š.: (2017) Extracellular Matrix Hydrogel Derived from Human Umbilical Cord as a Scaffold for Neural Tissue Repair and Its Comparison with Extracellular Matrix from Porcine Tissues. Tissue Engineering part C- Methods. 23(6): 333-345.

Lukovic, D., Diez Lloret, A., Stojkovic, P., Rodríguez-Martínez, D., Arago, M.P.P., Rodriguez-Jiménez, F.J., González-Rodríguez, P., López-Barneo, J., Syková, E., Jendelová, P., Kostic, J., Moreno-Manzano, V., Stojkovic, M., Bhattacharya, S.S., Erceg, S.: (2017) Highly Efficient Neural Conversion of Human Pluripotent Stem Cells in Adherent and Animal-Free Conditions. Stem Cells Translational Medicine. 6(4): 1217-1226.

Lukovic, D., Moreno-Manzano, V., Rodriguez-Jimenez, F.J., Vilches, A., Syková, E., Jendelová, P., Stojkovic, M., Erceg S.: (2017) HiPSC Disease Modeling of Rare Hereditary Cerebellar Ataxias: Opportunities and Future Challenges. Neuroscientist. 23(5): 554-566.

Machová-Urdzíková, L., Růžička, J., Kárová, K., Kloudová, A., Svobodová, B., Anubhav, A., Dubišová, J., Schmidt, M., Kubinová, Š., Jhanwar Uniyal, M., Jendelová, P.: (2017) A green tea polyphenol epigallocatechin-3-gallate enhances neuroregeneration after spinal cord injury by altering levels of inflammatory cytokines. Neuropharmacology. 126: 213-223.

Novotná, B. , Herynek, V., Rössner ml., P., Turnovcová, K., Jendelová, P.: (2017) The effects of grafted mesenchymal stem cells labeled with iron oxide or cobalt-zinc-iron nanoparticles on the biological macromolecules of rat brain tissue extracts. International Journal of Nanomedicine. 12: 4519-4526.

Růžička, J., Machová Urdziková, L., Gillick, J., Amemori, T., Romayuk, N., Kárová, K., Závišková, K., Dubišová, J., Kubinová, Š., Murali, R., Syková, E., Jhanwar-Uniyal, M., Jendelová, P.: (2017) A Comparative Study of Three Different Types of Stem Cells for Treatment of Rat Spinal Cord Injury. Cell Transplantation. 26(4): 585-603.

Růžička, J., Machová Urdziková, L., Svobodová, B. , Amin, A.G., Kárová, K., Dubišová, J., Závišková, K., Kubinová, Š., Schmidt,M., Jhanwar-Uniyal, M., Jendelová, P.: (2017) Combined therapy of Curcumin and Epigallocatechin gallate in an experimental model of spinal cord injury in rats. Neural Regeneration Research. IN PRESS

Syková, E. , Rychmach, P., Drahorádová, I., Konrádová, Š., Růžičková, K., Voříšek, I., Forostyak, S., Homola, A., Bojar, M.: (2017) Transplantation of Mesenchymal Stromal Cells in Patients With Amyotrophic Lateral Sclerosis: Results of Phase I/IIa Clinical Trial. Cell Transplantation. 26(4): 647-658.

Tyzack, G.E., Hall, E.C., Sibley, Ch.R., Cymes, T., Forostyak, S., Carlino, G., Meyer, I.F., Schiavo, G., Zhang, S.Ch., Gibbons, G.M., Newcombe, J., Patani, R., Lakatos, A.: (2017) A neuroprotective astrocyte state is induced by neuronal signal EphB1 but fails in ALS models. Nature Communications. 8: 1164.

2016

Čejka, Č., Čejková, J., Trošan, P., Zajícová, A., Syková, E., Holáň, V.: (2016) Transfer of mesenchymal stem cells and cyclosporine A on alkali-injured rabbit cornea using nanofiber scaffolds strongly reduces corneal neovascularization and scar formation. Histol. Histopath.,969-980.

Čejková, J., Čejka, Č., Trošan, P., Zajícová, A., Syková, E., Holáň, V.: (2016) Treatment of alkali-injured cornea by cyclosporine A-loaded electrospun nanofibers - An alternative mode of therapy. Exp. Eye Res., 147:128-37.

Forostyak, O., Butenko, O., Anděrová, M., Forostyak, S., Syková, E., Verkhratsky, A., Dayanithi, G.: (2016) Specific profiles of ion channels and ionotropic receptors define adipose- and bone marrow derived stromal cells. Stem Cell Res., 16(3): 622-634.

Forostyak, O., Forostyak, S., Kortus, Š., Syková, E., Verkhratsky, A., Dayanithi, G.: (2016) Physiology of Ca(2+) signalling in stem cells of different origins and differentiation stages. Cell Calcium, 59(2-3): 57-66.

Herynek, V., Turnovcová, K., Veverka, P., Dědourková, T., Žvátora, P., Jendelová, P., Gálisová, A., Kosinová, L., Jiráková, K., Syková, E.: (2016) Using ferromagnetic nanoparticles with low Curie temperature for magnetic resonance imaging-guided thermoablation. Int. J. Nanomed., 11: 3801-3811.

Chudičková, M. , Brůža, P., Zajícová, A., Trošan, P., Svobodová, L., Javorková, E., Kubinová, Š., Holáň, V.: (2015) Targeted neural differentiation of murine mesenchymal stem cells by a protocol simulating the inflammatory site of neural injury. J. Tissue Eng. Regen. Med., IN PRESS

Jelínek, M., Bačáková, L., Remsa, J., Kocourek, T., Mikšovský, J., Písařík, P.,Vandrovcová, M., Filová, E.,Kubinová, Š.: (2016) Hybrid Laser Technology for Creation of Doped Biomedical Layers. Journal of Materials Science and Chemical Engineering. 4 (1) 98-104.

Jendelová, P., Kubinová, Š., Sandvig, I., Erceg, S., Sandvig, A., Syková, E.: (2016) Current developments in cell - and biomaterial-based approaches for stroke repair. Expert Opin Biol Ther., 16(1): 43-56.

Jiráková, K., Šeneklová, M ., Jirak, D., Turnovcová, K., Vosmanská, M., Babič, M., Horák, D., Veverka, P., Jendelová, P.: (2016) The effect of magnetic nanoparticles on neuronal differentiation of iPS-derived neural precursors Int J Nanomedicine, 6: 6267-6281.

Kaman, O., Dědourková, T., Koktan, J., Kuličková, J., Maryško, M., Veverka, P., Havelek, R., Královec, K., Turnovcová, K., Jendelová, P., Schröfel, A., Svoboda, L.: (2016) Silica-coated manganite and Mn-based ferrite nanoparticles: a comparative study focused on cytotoxicity. J. Nanopart. Res., 18 (4): 100.

Kortus, Š., Srinivasan, C., Forostyak, O., Ueta, Y., Syková, E., Chvátal, A., Zápotocký, M., Verkhratsky, A., Dayanithi, G.: (2016) Physiology of spontaneous [Ca2+]i oscillations in the isolated vasopressin and oxytocin neurones of the rat supraoptic nucleus. Cell Calcium., 59(6): 280-288.

Kortus, Š., Srinivasan, C., Forostyak, O., Zápotocký, M., Ueta, Y., Syková, E., Chvátal, A., Verkhratsky, A., Dayanithi, G.: (2016) Sodium-calcium exchanger and R-type Ca2+ channels mediate spontaneous [Ca2+]i oscillations in magnocellular neurones of the rat supraoptic nucleus. Cell Calcium., 59(6): 289-298.

Lukovic, D., Diez Lloret, A., Stojkovic, P., Rodríguez-Martínez, D., Perez Arago, M.A., Rodriguez-Jimenez F.J., González-Rodríguez, P., López-Barneo, J., Syková, E., Jendelová, P., Kostic, J., Moreno-Manzano, V., Stojkovic,M., Shomi S Bhattacharya, S.S, Erceg S.: (2016) Highly efficient neural conversion of human pluripotent stem cells in adherent and animal-free conditions. Stem Cells Transl. Med., IN PRESS

Lukovic, D., Moreno-Manzano, V., Rodriguez-Jimenez, F.J., Vilches, A., Syková,E., Jendelová, P.,Stojkovic, M., Erceg S.: (2016) hiPSC Disease Modeling of Rare Hereditary Cerebellar Ataxias: Opportunities and Future Challenge. Neuroscientist ,IN PRESS

Lunov, O., Zablotskii, V., Churpita, O., Jaeger, A., Polívka, L ., Syková, E., Terebová, N., Kulikov, A., Kubinová, Š., Dejneka, A.: (2016) Towards the understanding of non-thermal air plasma action: effects on bacteria and fibroblasts. RSC Adv., 6(30) 25286-25292.

Lunov, O., Zablotskii, V., Churpita, O., Jäger, A., Polívka, L., Syková, E., Dejneka, A., Kubinová, Š.: (2016) The interplay between biological and physical scenarios of bacterial death induced by non-thermal plasma. Biomaterials., 82: 71-83.

Lunova, M., Zablotskii, V., Dempsey, N.M., Devillers, T., Jirsa, M., Syková, E., Kubinová, Š., Lunov, O., Dejneka, A.: (2016) Modulation of collective cell behaviour by geometrical constraints. Integr. Biol., 8(11): 1099-1110.

Macková, H., Plichta, Z., Proks, V., Kotelnikov, I., Kučka, J., Hlídková, H., Horák, D., Kubinová, Š, Jiráková, K.: (2016) RGDS- and SIKVAVS-Modified Superporous Poly(2-hydroxyethyl methacrylate) Scaffolds for Tissue Engineering Applications. Macromol. Biosci., IN PRESS.

Machová Urdzíková, L., Kárová, K., Růžička, J., Kloudová, A., Shannon, C., Dubišová, J., Murali, R., Kubinová, Š., Syková, E., Jhanwar-Uniyal, M., Jendelová, P.: (2016) The Anti-Inflammatory Compound Curcumin Enhances Locomotor and Sensory Recovery after Spinal Cord Injury in Rats by Immunomodulation. Int. J. Mol. Sci., 17(1).

Novotná, B., Turnovcová, K., Veverka, P., Rössner, P. Jr., Bagryantsevá, Y., Herynek, V., Zvatora, P., Vosmanská, M., Klementová, M., Syková, E., Jendelová, P.: (2016) The impact of silica encapsulated cobalt zinc ferrite nanoparticles on DNA, lipids and proteins of rat bone marrow mesenchymal stem cells. Nanotoxicology, 10(6): 662-670.

Růžička, J., Kulijewicz-Nawrot, M., Rodrigez-Arellano, J.J., Jendelová,P., Syková, E.: (2016) Mesenchymal Stem Cells Preserve Working Memory in the 3xTg-AD Mouse Model of Alzheimer's Disease. Int. J. Mol. Sci., 17(2): 152.

Růžička, J., Machová Urdziková, L ., Gillick, J., Amemori, T., Romayuk, N., Kárová, K., Závišková, K., Dubišová, J., Kubinová, Š., Murali, R., Syková, E., Jhanwar-Uniyal, M., Jendelová, P.: (2016) A comparative study of three different types of stem cells for treatment of rat spinal cord injury. Cell Transplant., IN PRESS

Syková, E ., Rychmach, P., Drahorádová, I., Konrádová, Š., Růžičková, K., Voříšek, I., Forostyak, S., Homola, A., Bojar, M.: (2016) Transplantation of mesenchymal stromal cells in patients with amyotrophic lateral sclerosis: Results of Phase I/IIa clinical trial. Cell Transplant., IN PRESS

Školoudik, L., Chrobok, V., Kalfert, D., Koči, Z., Syková, E., Chumak, T., Popelář, J., Syka. J., Laco, J., Dědková, J., Dayanithi, G., Filip, S.: (2016) Human multipotent mesenchymal stromal cells in the treatment of postoperative temporal bone defect: an animal model. Cell Transplant., 25(7): 1405-1414.

Šponer, P., Filip, S., Kučera, T., Brtková, J., Urban,K., Palička, V., Kočí, Z., Syka, M., Bezrouk, A., Syková, E.: (2016) Utilizing Autologous Multipotent Mesenchymal Stromal Cells and -Tricalcium Phosphate Scaffold in Human Bone Defects: A Prospective, Controlled Feasibility Trial. Biomed Res. Int., 2076061.

Tukmachev, D., Forostyak, S., Kočí, Z., Závišková, K., Vacková, I., Výborný, K., Sandvig, I., Sandvig, A., Medberry, C.J., Badylak, S.F., Syková, E., Kubinová, Š.: (2016) Injectable Extracellular Matrix Hydrogels as Scaffolds for Spinal Cord Injury Repair. Tissue Eng., 22(3-4): 306-317.

Voříšek, I., Syka, M., Vargová, L.: (2016) Brain Diffusivity and Structural Changes in the R6/2 Mouse Model of Huntington Disease. J. Neurosci. Res., IN PRESS.

Zablotskii, V., Lunov, O., Kubinová, Š., Polyaková, T., Syková, E., Dejneka, A.: (2016) Effects of high-gradient magnetic fields on living cell machinery. J. Phys. D-Appl. Phys., 49: 493003.

2015

Amemori, T., Jendelová, P., Růžička, J., Urdziková, L.M., Syková, E.: (2015) Alzheimer's Disease: Mechanism and Approach to Cell Therapy. Int J Mol Sci. 16(11): 26417-26451.

Amemori, T., Růžička, J., Romanyuk, N., Jhanwar-Uniyal, M., Syková, E., Jendelová, P.: (2015) Comparison of intraspinal and intrathecal implantation of induced pluripotent stem cell-derived neural precursors for the treatment of spinal cord injury in rats. Stem Cell Res Ther. 6(1): 257.

Babič, M., Schmiedtová, M., Poledne, R., Herynek V., Horák D.: (2015) In vivo monitoring of rat macrophages labeled with poly(l-lysine)-iron oxide nanoparticles. J Biomed Mater Res B Appl Biomater. 103(6): 1141-1148.

Forostyak, O., Romanyuk, N., Verkhratsky, A., Syková, E., Dayanithi G.: (2015) Plasticity of calcium signaling cascades in human embryonic stem cell-derived neural precursors. Stem Cells Dev., 22(10): 1506-1521.

Havlas, V., Kotaška, J., Koníček, P., Trč, T., Konrádová, Š., Kočí, Z., Syková, E.: (2015) Use of cultured human autologous bone marrow stem cells in repair of a rotator cuff tear: preliminary results of a safety study. Acta Chir Orthop Traumatol Cech. 82(3): 229-234.

Hejtčl, A., Jendelová, P., Sameš, M., Syková, E.: (2015) Experimental Treatment of Spinal Cord Injuries. Česká A Slovenska neurologie a neurochirurgie 78(4): 377-392.

Jelínek, M., Kocourek, T., Zemek, J., Mikšovský, J., Kubinová, Š., Remsa, J., Kopeček, J., Jurek, K.: (2015) Chromium-doped DLC for implants prepared by laser-magnetron deposition. Mater. Sci. Eng. C-Mater. Biol. Appl. 46: 381-386.

Klíma, K., Vaněček, V., Kohout, A., Jiroušek, O., Foltán, R., Stulík, J., Machoň, V., Pavlíková, G., Jendelová, P., Syková, E., Šedý, J.: (2015) Stem cells regenerative properties on new rat spinal fusion model. Physiol. Res. 64(1): 119-128.

Kubinová, Š., Horák, D., Hejčl, A., Plichta, Z., Kotek, J., Proks, V., Forostyak, S., Syková, E.: (2015) SIKVAV-modified highly superporous PHEMA scaffolds with oriented pores for spinal cord injury repair. J Tissue Eng Regen Med. 9(11): 1298-1309.

Kwiecien, J. M., Jarosz, B., Machová-Urdziková, L., Rola, R., Dabrowski, W.: (2015) Subdural infusion of dexamethasone inhibits leukomyelitis after acute spinal cord injury in a rat model. Folia Neuropathol., 64(1): 41-45.

Lukovic, D., Moreno-Manzano, V., Lopez-Mocholi, E., Rodriguez-Jiménez, F.J., Jendelová, P., Syková, E., Oria, M., Stojkovic, M., Erceg, S.: (2015) Complete rat spinal cord transection as a faithful model of spinal cord injury for translational cell transplantation. Sci Rep., 5: 19640.

Lukovic, D., Stojkovic, M., Moreno-Manzano, V., Jendelová, P., Syková, E., Bhattacharya, S. S., Erceg S.: (2015) Reactive astrocytes and stem cells in spinal cord injury: good guys or bad guys?Stem Cells. 33(4) :1036-1041.

Lunov, O., Churpita, O., Zablotskii, V., Deyneka, I.G., Meshkovskii, I.K., Jäger, A., Syková, E., Kubinová,Š., Dejneka, A.: (2015) Non-thermal plasma mills bacteria: Scanning electron microscopy observations. Applied Physics Letters. 106 (5) : 053703.

Raha-Chowdhury, R., Raha, A.A., Forostyak, S., Zhao, J.W., Stott, S.R., Bomford, A.: (2015) Expression and cellular localization of hepcidin mRNA and protein in normal rat brain. BMC Neurosci., 16: 24.

Romanyuk, N., Amemori, T., Turnovcová, K., Procházka, P., Onteniente, B., Syková, E., Jendelová, P.: (2015) Beneficial effect of human induced pluripotent stem cell-derived neural precursors in spinal cord injury repair.Cell Transplant.24(9): 1781-1797.

Syka, M., Keller, J., Klempíř, J., Rulseh, A.M., Roth, J., Jech, R., Vořišek, I., Vymazal, J.: (2015) Correlation between relaxometry and diffusion tensor imaging in the globus pallidus of Huntington's disease patients. PLoS One., 10(3): e0118907.

Tukmachev, D. , Lunov, O., Zablotskii, V., Dejneka, A., Babič, M., Syková, E., Kubinová, Š.: (2015) An effective strategy of magnetic stem cell delivery for spinal cord injury therapy. Nanoscale.7(9): 3954-3958.

Novel therapeutic approaches to neuronal regeneration following spinal cord injury using functionalized microstructured hydrogels and stem cell, GA ČR 17-11140S, Principal Co-Investigator Jendelova, 2017–2019

Treating Glioblastoma with surface engineered superparamagnetic iron oxide nanoparticles for efficient conjugation with anticancer drugs 17-04918S Principal Investigator Jendelova, 2017–2019

Center of Reconstruction Neuroscience – NEURORECON CZ.02.1.01/0.0/0.0/15_003/0000419 Coordinator Pavla Jendelova 2017–2022

Experimental transplantation of retinal pigment epithelial cells on a large animal model, GAČR 18-04393S, 2018-2020

MicroRNAs in Nervous System Injuries: Possible role and therapeutic relevance, GAČR 18-21942S, Principal Investigator Nataliya Romanyuk, PhD, 2018-2020

Study of signaling pathways associated with secondary reactions, formation of reactive oxygen radicals and inflammation in spinal cord injury and subsequent regeneration. The Ministry of Education, Youth and Sports, program InterExcelence, InterAction LTAUSA17120, Principal Investigator Jendelova 2017-2020.

Institute for Clinical and Experimental Medicine
Institute of macromolecular chemistry CAS
Physical Institute CAS
2nd Faculty of Medicine, Charles University
Faculty of Medicine Hradec Králové, Charles University
Faculty of Biomedical Engineering, Czech Technical University

Mail room:
building La 2. floor, room number 2.18
Mo–Fri   9:00–13:00

Data box:
kqcnc2p

Contacts

Vídeňská 1083
142 20 Praha 4-Krč
Czech Republic
+420 241 062 230